SIA 262.051 (EN-206) édition 2021 (extraits)

Annexe nationale NA (normative) Définitions, explications, règles nationales

Tableau NA.1 Liste des ciments autorisés (état 1.12.2021, liste actualisée: www.sia.ch/registre)

- + Ciment autorisé pour l'emploi
- Ciment non autorisé pour l'emploi

	Sorte de béton selon tableau NA.5							
		Bâti	ment			Génie	e civil	
Type de ciment	Sorte 0 (zéro)	Sorte A	Sorte B	Sorte C	Sorte D (T1)	Sorte E (T2)	Sorte F (T3)	Sorte G (T4)
CEM I	+	+	+	+	+	+	+	+
CEM II/A-LL	+	+	+	+	+	+	+	+
CEM II/A-M (D-LL)	+	+	+	+	+	+	+	+
CEM II/B-LL a)	+	+	+	-	-	-	-	-
CEM II/A-D	+	+	+	+	+	+	+	+
CEM II/A-S	+	+	+	+	+	+	+	+
CEM III/A	+	+	+	+	-	_	_	_
CEM III/B	+	+	+	+	+	+	+	+
CEM II/A-M (V-LL) 1)	+	+	+	+	+	+	+	+
CEM II/B-M (V-LL) 1)	+	+	+	+	+	+	+	+
CEM II/B-T 2)	+	+	+	+	+	+	+	+
CEM II/B-M (T-LL) 3)	+	+	+	+	+	+	+	+
CEM II/B-M (S-LL) 4)	+	+	+	+	+	+	+	+
CEM II/B-M (S-T) 5)	+	+	+	+	+	+	+	+
CEM IV/A-P 6)	+	+	_	-	-	-	+	+
CEM II/B-Q 7)	+	+	+	+	+	+	+	+
CEM II/B-LL 8)	+	+	+	+	+	+	+	+
CEM II/B-LL 9)	+	+	+	+	-	-	_	_
CEM IV/A (V) 10)	+	+	+	+	+	+	+	+
CEM II/B-LL 11)	+	+	+	+	-	-	_	_
ZN/D ¹²⁾	+	+	+	+	+	+	+	+
CEM IV/A (V) 13)	+	+	+	+	+	+	+	+
CEM II/B-M (V-LL) 14)	+	+	-	+	-	-	-	-
CEM II/B-M (S-LL) 15)	+	+	+	+	-	-	-	-

- a) Le dosage minimal en ciment est à majorer de 20 kg/m³.
- 1) Producteur: Holcim (Suisse) SA, selon la décision du 7.10.2005 de S-Cert SA.
- 2) Producteur: Holcim (Baden-Württemberg) Sàrl, selon la décision du 7,10,2005 de S-Cert SA,
- 3) Producteurs: Holcim (Suisse) SA, Holcim (Vorarlberg) Sàrl, Holcim (Süddeutschland) Sàrl et Holcim (France), selon la décision du 6,10,2010 de S-Cert SA,
- Producteurs : Jura-Cement-Fabriken AG et Juracime SA, selon la décision du 6.3.2009 de S-Cert SA.
- 5) Producteurs: Holcim (Schweiz) AG, Holcim (Vorarlberg) GmbH, Holcim (Süddeutschland) GmbH, selon la décision du 10.12.2010 de S-Cert SA.
- ⁶⁾ Producteur: Buzzi Unicem S.p.A., Italie, selon la décision du 11.06.2018 de S-Cert SA; intermédiaire: Ghielmimport SA, Mezzo-vico/TI.
- Producteur: Hans G. Hauri KG, Bötzingen/D, selon la décision du 6.6.2013 de S-Cert SA.
- Producteurs: Jura-Cement-Fabriken AG, Wildegg, et Juracime SA, Cornaux, selon la décision du 10.01.2019 de S-Cert SA.
- 9) Producteur: Ciments Vigier SA, Péry, selon la décision du 28,07,2017 de S-Cert SA,
- 10) Producteur: Colacem S.p.A., Gubbio, Italie, selon la décision du 22,12,2014 de S-Cert SA.
- 11) Producteurs: Holcim Central Europe West (Eclépens, Siggenthal, Untervaz, Dotternhausen/DE et Altkirch/FR), selon la décision du 10.12.2015 de S-Cert SA. Désignation de marque: Batimo.
- 12) Producteur: Holcim (Suisse) SA (Siggenthal, Eclépens, Untervaz), selon la décision du 26.05.2016 et 04.03.2021 de S-Cert SA. Désignation de marque: Susteno.
- 13) Producteur : Holcim (Italia) S.p.A. (Merone et Ternate), selon la décision du 11.05.2017 de S-Cert SA.
- 14) Producteur: Schwenk Zement KG, D-89604 Allmendingen, selon la décision du 11.04.2019 de S-Cert SA.
- 15) Producteur: Heidelberg Cement AG, Werk Lengfurt, D-97855 Triefenstein, selon la décision du 07.07.2021 de S-Cert SA.
- (2) Les ciments d'aluminates de calcium selon SN EN 14647 et les ciments sursulfatés selon SN EN 15743 +A1:2015 ne peuvent être utilisés en Suisse que sur demande spécifique liée à un objet, Les règlements de cette annexe nationale NA sont à appliquer par analogie.

NA.5.2.5.2 Concept du coefficient *k* pour cendres volantes (CV), fumée de silice (FS), laitier (LHF) et Hydrolith F200

NA,5,2,5,2,1 Généralités

- (2) Le concept du coefficient *k* permet de tenir compte d'additions de type II. Dans ce but, il existe la variante (complém.) a) selon chiffre 5.2.5.2.1(2) EN 206 et la variante b).
- b) (nouveau) Pour la variante b) les points suivants s'appliquent :
 - Le «rapport eau/ciment» est remplacé par «rapport eau/(ciment + k · addition)», resp. e/c_{ea}
 - La teneur totale de ciment et additions ne doit pas être inférieure au dosage minimal en ciment selon tableau NA.6. Les règles des chiffres NA.5.2.5.2.2 à NA.5.2.5.2.5 s'appliquent pour la prise en compte des additions.
- (4) (nouveau) En cas d'utilisation d'un ciment de type CEM I ou CEM II/A-LL, on peut utiliser le concept du coefficient k pour toutes le classes de résistance du ciment, si celui-ci est combiné avec des cendres volantes (CV), de la fumée de silice (FS), du laitier (LHF) ou de l'Hydrolith F200. Dans ce cas, les règles du tableau NA,2 et des chiffres 5.2.5.2.2 à 5.2.5.2.5 s'appliquent.
- (5) (nouveau) Des ciments (type et classes de résistance) pas mentionnés sous (4), additions ou combinaisons ciment/ addition peuvent être autorisés au moyen des annexes nationales NB et NC pour toutes ou quelques-unes des classes d'exposition (tableaux NA,2 et NA,2a).
- (6) (nouveau) Si un dosage plus élevé en addition que celui spécifié au tableau NA.2 est utilisé, l'excédent ne doit pas être pris en compte, ni pour le calcul du rapport e/c_{eq}, ni pour le dosage minimal en ciment, Les dosages maximaux admissibles en additions en cas d'utilisation individuelle ou combinée sont spécifiés au tableau NA.3,

Tableau NA.2 Dosages maximaux en additions de type II pouvant être pris en compte pour assurer la durabilité (état 1,12,2021, liste actualisée: www.sia.ch/registre). c: Dosage en ciment en kg/m³

Addition type II	Coeff.	Type de ciment	Classe de résistance du ciment	Classes d'expo- sition (CH)/ Sortes de béton	Dosages max. à prendre en compte pour e/c_{eq} et $c_{min,add}$ en kg/m ³
		CEM I	32,5; 42,5; 52,5	toutes	0,33 · c
Cendres volantes (CV)	0,4	CEM II/A-LL	32,5; 42,5; 52,5	XC1 bis XC4, XD1, XF1 (bâti- ment)	0,25 · c
Fumée de silice	1,0	СЕМ І	32,5; 42,5; 52,5	toutes	0,11 · c
(FS)	1,0	CEM II/A-LL	32,5; 42,5; 52,5	toutes	0,11 · c
1 - 20 41 1153	0,5	CEM	32,5; 42,5; 52,5	Sortes D à G	0,50 · c
Laitier (LHF)	0,5	CEM II/A-LL	32,5; 42,5; 52,5	(génie civil) 1)	0,50 · c
		CEM I	32,5; 42,5; 52,5	toutes, sauf XF2 et XF4	0,25 · c
Hydrolith F200	0,4	CEM II/A-LL	32,5; 42,5; 52,5	XC1 à XC4; XD1; XF1 (bâtiment)	0,25 · c
Cendres volantes (CV) 2)	0,4	CEM II/B-M (T-LL) 2)	42,5	XC1; XC2; XC3; XC4; XD1; XF1	0,25 · c
Hydrolith F200 ²⁾	0,4	CEM II/B-M (T-LL) 2)	42,5	XC1 bis XC4; XD1; XF1 (bâtiment)	0,20·c
Cendres volantes (CV) 3)	0,4	CEM II/B-M (S-T) 3)	42,5 R	toutes	0,25 · <i>c</i>

Dans des cas exceptionnels, cela est aussi autorisé pour des bétons de bâtiment (classes d'exposition XC1(CH) à XC4(CH), XD1(CH), XF4CH)). La durée de cure doit alors être prolongée d'un facteur 2. En outre, il faudra prouver que le béton puisse satisfaire les exigences en matière de résistance à la carbonatation selon tableau NA.14.

Tableau NA.2a Liste des additions de type l autorisées (état 1.12.2021, liste actualisée: www.sia.ch/registre)

Addition de type I	Coefficient k
Pneumatit 1)	0

¹⁾ Producteur: Pneumatit AG, Klosterplatz 1, 8462 Rheinau, selon décision de S-Cert SA du 09.01.2018.

Producteur: Holcim (Schweiz) AG, selon la décision de S-Cert SA du 21.10.2021.

Producteurs: Holcim (Schweiz) AG, Holcim (Süddeutschland) GmbH et Holcim France S.A.S, selon la décision de S-Cert SA du 09.12.2013.

NA.5.2.5.2.2 Concept du coefficient k pour des cendres volantes (CV) selon SN EN 450-1

(nouveau) Avec un ciment de type CEM I, le dosage minimal en ciment exigé ne peut pas être réduit de plus de k·(dosage min. en ciment – 200) kg/m³.

(nouveau) Avec un ciment de type CEM II/A-LL, le dosage minimal en ciment dépend de la teneur en calcaire (KG) du ciment CEM II/A-LL utilisé. La formule suivante s'applique:

$$c_{min,edd} \ge c_{min} - \left[\left(k \cdot (c_{min} - 200) \right) \cdot \left(1 - \frac{KG}{100 - KG} \right) \right]$$
 en kg/m³

 $c_{\it min, add}$ dosage minimal en ciment en cas d'utilisation de cendres volantes, en kg/m³

c_{min} dosage minimal en ciment selon tableaux NA.6 et NA.9, en kg/m³

k coefficient k des cendres volantes (type II), sans unité

KG teneur en calcaire du ciment CEM ||/A-LL utilisé, en %-masse

La teneur effective en calcaire KG dans le ciment CEM II/A-LL utilisé est fournie annuellement, ou immédiatement en cas de fluctuations supérieures à \pm 2 %-masse, par le fournisseur de ciment au producteur de béton.

NA.5.2.5.2.3 Concept du coefficient k pour de la fumée de silice (FS) selon SN EN 13263-1+A1:2009

(3) (correct.) Remplacer « eau/(ciment + k · cendres volantes) » par « eau/(ciment + k · fumée de silice) »

(nouveau) Les règles pour l'emploi de fumée de silice sont récapitulées aux tableaux NA.2 et NA.3.

(nouveau) Le dosage minimal admissible en ciment en cas d'ajout de fumée de silice (FS) peut être déterminé au moyen de l'équation suivante:

$$c_{min,edd} \ge c_{min} - k \cdot s$$
 en kg/m³

c_{min,add} dosage minimal en ciment en cas d'utilisation de fumée de silice, en kg/m³

c_{min} dosage minimal en ciment selon tableaux NA.6 et NA.9, en kg/m³

k coefficient k de la fumée de silice, sans unité

NA.5.2.5.2.4 Concept du coefficient k pour du laitier (LHF) selon SN EN 15167-1

(nouveau) Les règles pour l'emploi de laitier sont récapitulées aux tableaux NA,2 et NA,3,

(nouveau) Le dosage minimal admissible en ciment en cas d'ajout de laitier peut être déterminé au moyen de l'équation suivante:

$$c_{min,add} \ge c_{min} - (k \cdot (c_{min} - 200))$$
 en kg/m³

 $c_{min,add}$ dosage minimal en ciment en cas d'utilisation de laitier, en kg/m³ dosage minimal en ciment selon tableaux NA,6 et NA,9, en kg/m³

k coefficient k du laitier, sans unité

NA.5.2.5.2.5 Concept du coefficient k pour Hydrolith F200

(nouveau) Les règles pour l'emploi d'Hydrolith F200 sont récapitulées aux tableaux NA.2 et NA.3.

Le dosage minimal admissible en ciment en cas d'ajout d'Hydrolith F200 est déterminé comme pour les cendres volantes (chiffre NA.5.2.5.2.2).

Des bétons avec Hydrolith F200 ne peuvent être intégrés dans une famille de béton que lorsqu'ils ont passé avec succès l'essai initial.

Note : Pour le béton à haute résistance à la RAG, l'Hydrolith F200 ne peut être employé qu'à condition que la preuve d'aptitude selon SIA 2042 ait été apportée,

NA.5.2.5.2.6 Dosages maximaux en additions et utilisation de plusieurs additions

(nouveau) Le dosage maximal en additions est limité (tableau NA.3) afin d'assurer une alcalinité suffisante de la solution de pores dans le béton armé ou précontraint. En plus, les combinaisons suivantes ne sont pas admises:

- l'utilisation combinée de fumée de silice et laitier,
- l'utilisation combinée de fumée de silice et Hydrolith F200 ensemble avec d'autres additions (type II), par ex. cendres volantes.

Tableau NA.3 Dosages maximaux en additions de type II pour assurer une alcalinité suffisante c: dosage en ciment en kg/m³; FS: dosage en fumée de silice en kg/m³

Addition	Dosage max. avec CEM I	Dosage max. avec CEM II/A-LL
Cendres volantes	≤ 0,66 · c	≤ 0,45 · c
Hydrolith F200	≤ 0,66 · c	≤ 0,45 · c
Fumée de silice	≤ 0,11 · c	≤ 0,11 · c
Laitier	≤ 0,80 · c	≤ 0,60 · c
Cendres volantes et fumée de silice	≤ (0,66·c – 3·FS)	≤ (0,45 · c − 3 · FS)
Hydrolith F200 et fumée de silice	≤ (0,66 · c − 3 · FS)	≤ (0,45 · c − 3 · FS)

NA.5.2.8 Teneur en chlorures

(1) Le tableau NA.4 remplace le tableau 15 de EN 206. Pour des bétons à base de ciment de type CEM III d'autres classes de teneur en chlorures peuvent être spécifiées.

Tableau NA,4 Teneurs maximales en chlorures du béton

Utilisation du béton	Classe de clorures ¹⁾	Teneur maximale en chlorures rapportée à la masse de ciment ²⁾
Ne contenant ni armature en acier ni pièces métalliques noyées (à l'exception des pièces de levage résistant à la corrosion)	Cl 1,0	1,0 %
Contenant des armatures en acier ou des pièces métalliques noyées	Cl 0,20	0,20 %
Contenant des armatures de précontrainte en acier en contact direct avec le béton ou des unités de précontrainte par câbles injectés	Cl 0,10	0,10 %

¹⁾ Lors de la production de béton, la teneur en chlorures, exprimée comme le pourcentage d'ions chlorure par rapport à la teneur en ciment, ne doit pas dépasser la valeur correspondant à la classe spécifiée.

²⁾ Lorsque des additions sont utilisées et sont prises en compte pour le dosage en ciment, la teneur en chlorures est exprimée comme le pourcentage d'ions chlorure par rapport à la masse du ciment plus la masse totale des additions considérées.

Tableau NA.5 Exigences de base et supplémentaires aux sortes de béton fréquemment utilisées (bétons plastiques, mise en place à la grue ou à la pompe) pour le bâtiment (A à C) et le génie civil (D à G) avec un grain maximal du granulat de 32 mm

Sorte	Sorte 0 («zéro»)	Sorte A	Sorte B	Sorte C	Sorte D (T1) ^{2),3)}	Sorte E (T2) 3)	Sorte F (T3) ⁴⁾	Sorte G (T4) ⁴⁾
Exigences de base								
Conformité avec cette norme						Béton selon SN EN 206		
Classe de résistance à la compression	C12/15	C20/25	C25/30	C30/37	C25/30	C25/30	C30/37	C30/37
Classe(s) d'exposition (combinaison des classes indiquées)	X0(CH)	XC2(CH)	XC3(CH)	XC4(CH), XF1(CH)	XC4(CH), XD1(CH), XF2(CH)	XC4(CH), XD1(CH), XF4(CH)	XC4(CH), XD3(CH), XF2(CH)	XC4(CH), XD3(CH), XF4(CH)
Dimension maximale du granulat	D _{max} 32	D _{max} 32	D _{max} 32	D _{max} 32	D _{mex} 32	D _{max} 32	D _{max} 32	D _{max} 32
Classe de teneur en clorures 5)	CI 0,10	CI 0,10	CI 0,10	CI 0,10	Cl 0,10	CI 0,10	CI 0,10	CI 0,10
Classe de consistance 6)	C3	C3	C3	C3	C3	C3	C3	C3
Exigences supplémentai	res pour ce	rtaines cla	sses d'exp	osition XF	2(CH) à XF	4(CH) et s	ortes de bé	ton
Résistance au gel/dégel en présence de sels de déverglaçage	néant	néant	néant	néant	moyenne	élevée	moyenne	élevée
Résistance à la RAG	néant	néant	néant	néant/ élevée ⁷⁾	élevée	élevée	élevée	élevée
Exigences supplémentaires (à spécifier selon l'objet)								
Résistance aux sulfates	néant	néant	néant	selon chiffre NA.5.3.4.9				

La sorte de béton A couvre aussi les exigences de la classe d'exposition XC1(CH).

²⁾ La sorte de béton D couvre aussi les exigences de la classe d'exposition XF3(CH).

³⁾ Les sortes D et E couvrent la classe d'exposition XD2a(CH), Définition voir chiffre NA,4,1,

⁴⁾ Les sortes F et G couvrent la classe d'exposition XD2b(CH). Définition voir chiffre NA.4.1.

⁵⁾ La classe de teneur en chlorures indiquée convient au béton armé et au béton précontraint.

⁶⁾ La classe de consistance indiquée est informative. Sa pertinence relative aux conditions cadres du projet et aux besoins de l'utilisateur (par ex. méthode de mise en place du béton) doit être vérifiée par l'utilisateur du béton au moment de la phase de soumission. Le cas échéant, celui-ci doit l'adapter dans son offre (cf. chiffre NA.5.3.4.1). Note : Selon chiffre 5.4.1 (5) de EN 206, la conformité de la consistance doit être établie au moment de la livraison à l'utilisateur.

⁷⁾ La résistance à la RAG dépend de la structure porteuse et de la durée d'utilisation, voir SIA 2042.

Tableau NA.6 Exigences à la composition et aux essais des sortes de béton fréquemment utilisées (grain maximal du granulat de 8 mm à 63 mm)

Sorte Exigences	Sorte 0 («zéro»)	Sorte A	Sorte B	Sorte C	Sorte D (T1)	Sorte E (T2)	Sorte F (T3)	Sorte G (T4)
Classe d'exposition (combinaison des classes indiquées)	X0(CH)	XC2(CH)	XC3(CH)	XC4(CH), XF1(CH)	XC4(CH), XD1(CH), XF2(CH)	XC4(CH), XD1(CH), XF4(CH)	XC4(CH), XD3(CH), XF2(CH)	XC4(CH), XD3(CH), XF4(CH)
Rapport e/c resp, rapport e/c _{eq} maximal	_	0,65	0,60	0,50	0,50	0,50	0,45	0,45
Dosage min, en ciment c_{min} , en kg/m ^{3 1),2)}	_	280	280	300	300	300	320	320
Essais de durabilité 3)	néant	néant	PE ⁴⁾ , RCarb	RCarb	RCarb, GDS	RCarb, GDS	RCI, GDS	RCI, GDS
Autres exigences	SN EN 12620+A1:2008 contient les exigences relatives aux granulats							
Ciments admis (tableau NA.1)		En cas de combinaison des classes d'exposition, le choix du ciment se fait en fonction de l'exigence la plus sévère						

Le dosage minimal en ciment est valable pour des bétons sans additions et pour D_{max} 32 mm. Pour d'autres D_{max}, adapter le dosage minimal en ciment selon tableau NA,7,

Tableau NA,7 Correction des dosages minimaux en ciment en fonction de la dimension maximale des grains du granulat du béton

	Diamètre nominal supérieur du plus gros granulat, en mm				en mm	
	8	16	22,5	32	45	63
Correction en % des dosages minimaux en ciment selon tableau NA.6	+15 %	+10 %	+5%	0	-5%	-10 %

²⁾ Pour le ciment de type CEM ||/B-LL |a note de bas de page du tableau NA,1 est à consulter,

³⁾ Essais selon la norme SIA 262/1:2019, annexes A, B, C et I pour la perméabilité à l'eau (PE), la résistance aux chlorures (RCI), la résistance au gel/dégel en présence de sels de déverglaçage (GDS) et la résistance à la carbonatation (RCarb). Les valeurs limites et critères de conformité figurent au chiffre NA.8.2.3.4 (tableau NA.14).

⁴⁾ La perméabilité à l'eau (PE) est à déterminer lorsque cette preuve est demandée selon chiffre NA.8.2.3.5.

Tableau NA.8 Exigences de base et supplémentaires aux sortes de béton utilisées pour pieux forés et parois moulées (P1 à P4)

Sorte	P1 au sec	P2 sous l'eau	P3 au sec	P4 sous l'eau
Exigences de base				
Conformité avec cette norme	Béton selon SN EN 206	Béton selon SN EN 206	Béton selon SN EN 206	Béton selon SN EN 206
Classe de résistance à la compression	C25/30	C25/30	C20/25	C20/25
Classe(s) d'exposition	néant 1)			
Dimension maximale nominale du granulat		D_{max}	32	
Classe de teneur en chlorures		Cl 0,	10	
Classe de consistance 2)	F4	F5	F4	F5
Exigences supplémentaires (à spécifier selon	l'objet)			
Résistance à la RAG 4)	néant	élevée	néant	élevée
Résistance au gel/dégel en présence de sels de déverglaçage	(évtl. moyenne) 3)	(évtl. moyenne) 3)	néant	néant
Résistance aux sulfates	néant	selon chiffre NA.5.3.4.9 ff.	néant	néant

¹⁾ Aucune classe d'exposition n'est indiquée pour éviter une possible confusion.

Tableau NA.9 Exigences relatives à la composition des sortes de béton utilisées pour pieux forés et parois moulées (dimension maximale du granulat D_{max} de 16 mm à 32 mm)

Sorte Exigences	P1 au sec	P2 sous l'eau	P3 au sec	P4 sous l'eau
Rapport <i>e/c</i> resp, rapport <i>e/c_{eq}</i> maximal	0,50	0,50	0,60	0,60
Dosage min. en ciment c_{min} , en kg/m ^{3 1)}	330	380	330	380
Granulats	selon SN EN 12620+A1:2008			
Valeur de référence pour la teneur en farine du béton, en kg/m³ 2)	≥ 400			
Types de ciment autorisés	selon tableau NA,1 pour les sortes de béton D et E ³⁾		·	

Le dosage minimal en ciment est valable pour des bétons sans additions et pour D_{max} de 16 mm à 32 mm. Pour un D_{max} autre qu'entre 16 mm et 32 mm, adapter le dosage minimal en ciment.

La classe de consistance indiquée est informative, Sa pertinence relative aux conditions cadres du projet et aux besoins de l'utilisateur (par ex, méthode de mise en place du béton) doit être vérifiée par l'utilisateur du béton au moment de la phase de soumission, Le cas échéant, celui-ci doit l'adapter dans son offre (cf. chiffre NA.5.3.4.1). Note : Selon chiffre 5.4.1 (5) de EN 206, la conformité de la consistance doit être établie au moment de la livraison à l'utilisateur

³⁾ Dans des cas particuliers (par ex. surfaces à l'air libre des pieux), l'exigence d'une résistance moyenne au gel/dégel en présence de sels de déverglaçage peut être indiquée.

⁴⁾ Selon SIA 2042. Exceptionnellement il peut s'avérer nécessaire de définir la classe de prévention spécifiquement à l'ouvrage en fonction des classes de risque et d'environnement. Les exigences relatives à la résistance à la RAG dépendent de la durée d'utilisation.

Pour un D_{max} autre qu'entre 16 mm et 32 mm, adapter la valeur de référence de la teneur en farine (cf. chiffre 3.1.2.9 de EN 206).

³⁾ S'il est assure que le béton n'est pas exposé à une attaque par le gel/dégel sans ou avec sels de déverglaçage, on peut aussi utiliser les ciments autorises pour l'utilisation dans des bétons de sorte C selon tableau NA.1.

Tableau NA.10 Sortes de béton admises pour différents types d'agression chimique

Classification en raison de la teneur en sulfates dans les eaux souterraines ou dans le sol 1)			Classification en raison d'autres types d'agression chimique (dissolvante)			
Classe d'exposition	Bâtiment et génie civil	Pieux	Classe d'exposition	Bâtiment et génie civil	Pieux	
XA1s(CH)	C ou D (T1)		XA1c(CH)	C ou D (T1)		
XA2s(CH)	0 00 0 (11)	P2 ³⁾	XA2c(CH)	F (T3) 4)	P2 ³⁾	
XA3s(CH)	F (T3) 2)		XA3c(CH)	F (T3) 2)		

¹⁾ Utiliser un ciment avec une haute résistance aux sulfates selon tableau NA.11.

Tableau NA.11 Liste des ciments SR avec une haute résistance aux sulfates autorisés en Suisse et des ciments HS-CH avec une haute résistance aux sulfates autorisés (état: 1,12,2021; liste actualisée: www.sia,ch/registre)

Type de ciment	Désignation	Disposition correspondante
Ciment Portland	CEM I-SR 0	
Ciment Portland	CEM I-SR 3	Norme SN EN 197-1
Ciment de haut-fourneau	CEM III/B-SR	
Ciment Portland composé 1)	CEM II/B-M(S-T)-HS-CH	Annexe nationale NB de SN EN 197-1:2011
Ciment Portland composé 2)	CEM II/A-M (D-LL)-HS-CH	Annexe nationale NB de SN EN 197-1:2011
Ciment Portland composé 3)	CEM II/B-M (S-LL)-HS-CH	Annexe nationale NB de SN EN 197-1:2011
Ciment Portland à la fumée de silice 4)	CEM II/A-D-HS-CH	Annexe nationale NB de SN EN 197-1:2011
Ciment pouzzolanique 5)	CEM IV/A (V)-SR	Annexe nationale NB de SN EN 197-1:2011

Producteur: Holcim (Schweiz) AG, selon la décision du 7.9.2012 de S-Cert SA.

NA.5.4.1 Consistance

(1) En raison du manque de sensibilité des méthodes d'essai au-delà de certaines plages de consistance, ces note essais ne sont à utiliser qu'à l'intérieur des plages suivantes:

hauteur d'affaissement
 indice de serrage
 diamètre d'étalement
 étalement au cône d'Abrams
 ≥ 10 mm et ≤ 210 mm
 ≥ 1,04 et < 1,46
 > 340 mm et ≤ 620 mm
 > 550 mm et ≤ 850 mm.

- (8) (nouveau) On entend par premier déversement la quantité de béton frais qui est déversée jusqu'à maximum 1,0 m³.
- (9) (nouveau) Pour d'autres types de béton (par ex. béton de masse avec un très grand D_{max} tel qu'utilisé pour des barrages) la méthode d'essai est à convenir,

²⁾ Il convient de consulter des spécialistes pour déterminer si d'autres mesures de protection sont nécessaires.

³⁾ Le cas échéant, consulter des spécialistes.

⁴⁾ Cette sorte de béton convient également en cas d'agression chimique due aux eaux usées dans les bassins biologiques des STEP (classe d'exposition XAA) selon le cahier technique CT 01 de cemsuisse, Ce document contient des recommandations pour d'autres mesures.

Producteur: Ciments Vigier SA, Péry, selon la décision du 23.9.2014 de S-Cert SA.

³⁾ Producteur: Jura-Cement-Fabriken AG et Juracime SA, selon décision du 24,3,2016 de S-Cert SA,

⁴⁾ Producteur: Holcim Central Europe West (Siggenthal, Eclépens, Untervaz, Dotternhausern/DE et Altkirch/FR), selon décision du 30,3,2017 de S-Cert SA.

⁵⁾ Producteur: Holcim (Italia) S.p.A. (Merone et Ternate), selon décision du 26.05.2017 de S-Cert SA.

NA,6,2,2 Exigences de base

d) $D_{mex} = D_{upper} = D_{lower}$ (nouveau)

Cela s'applique en l'absence d'autres conventions.

3.1.2.2

addition de type I en : type I addition de : Typ-I-Zusatzstoff addition quasi-inerte

3.1.2.3

addition de type II en : type II addition

de : Typ-II-Zusatzstoff addition à caractère pouzzolanique ou hydraulique latent

Tableau 1 — Classes d'exposition

Désignation de la classe	Description de l'environnement	Exemples informatifs illustrant le choix des classes d'exposition		
1 Aucun ri	1 Aucun risque de corrosion ni d'attaque			
Х0	Pour le béton non armé ou sans pièces métalliques noyées : toutes les expositions sauf l'abrasion, l'attaque chimique ou par le gel- dégel. Pour le béton armé ou avec des pièces métalliques noyées : très sec.	Béton à l'intérieur de bâtiments où le taux d'humidité de l'air ambiant est très faible		
2 Corrosio	n par carbonatation			
	on armé ou contenant des pièces métalliques noy oivent être définies comme suit :	ées est exposé à l'air et à l'humidité, les classes		
XC1	Sec ou humide en permanence	Béton à l'intérieur de bâtiments où le taux d'humidité de l'air ambiant est faible ; béton immergé dans l'eau en permanence		
XC2	Humide, rarement sec	Surfaces de béton soumises au contact de l'eau à long terme ; grand nombre de fondations		
хсз	Humidité modérée	Béton à l'intérieur de bâtiments où le taux d'humidité de l'air ambiant est moyen ou élevé ; béton extérieur abrité de la pluie		
XC4	Alternance d'humidité et de séchage	Surfaces soumises au contact de l'eau, mais n'entrant pas dans la classe d'exposition XC2		
3 Corrosio	n par les chlorures autres que ceux de l'eau de	mer		
Lorsque le béton armé ou contenant des pièces métalliques noyées est soumis au contact d'une eau contenant des chlorures d'origine autre que marine, y compris ceux des sels de déverglaçage, les classes d'exposition doivent être définies comme suit :				
XD1	Humidité modérée	Surfaces de bétons exposées à des chlorures transportés par voie aérienne		
XD2	Humide, rarement sec	Piscines ; béton exposé à des eaux industrielles contenant des chlorures		
XD3	Alternance d'humidité et de séchage	Éléments de ponts exposés à des projections contenants des chlorures. Chaussées ; dalles de parcs de stationnement de véhicules		

Désignation de la classe	Description de l'environnement	Exemples informatifs illustrant le choix des classes d'exposition		
4 Corrosio	n par les chlorures de l'eau de mer			
	Lorsque le béton armé ou contenant des pièces métalliques noyées est soumis au contact des chlorures de l'eau de mer ou à l'action de l'air véhiculant du sel marin, les classes d'exposition doivent être définies comme suit :			
XS1	Exposé à l'air véhiculant du sel marin, mais pas en contact direct avec l'eau de mer	Structures sur ou à proximité d'une côte		
XS2	Immergé en permanence	Éléments de structures marines		
XS3	Zones de marnage, zones soumises à des projections ou à des embruns	Éléments de structures marines		
5 Attaque	par le gel-dégel avec ou sans agent de dévergla	çage		
	on est soumis à une attaque significative due à de sition doivent être définies comme suit :	s cycles de gel-dégel alors qu'il est mouillé, les		
XF1	Saturation modérée en eau sans agent de déverglaçage	Surfaces verticales de bétons exposées à la pluie et au gel		
XF2	Saturation modérée en eau avec agent de déverglaçage	Surfaces verticales de bétons des ouvrages routiers exposées au gel et à l'air véhiculant des agents de déverglaçage		
XF3	Forte saturation en eau sans agent de déverglaçage	Surfaces horizontales de bétons exposées à la pluie et au gel		
XF4	Forte saturation en eau avec agents de déverglaçage ou eau de mer	Routes et tabliers de pont exposés aux agents de déverglaçage ; surfaces de bétons directement exposées aux projections d'agents de déverglaçage et au gel ; zones des structures marines soumises aux projections et exposées au gel		
6 Attaque	chimique			
Lorsque le béton est soumis à une attaque chimique par les sols et les eaux souterraines naturels, les classes d'exposition doivent être définies comme suit :				
XA1	Environnement à faible agressivité chimique	Béton exposé à des sols et des eaux souterraines naturels selon le Tableau 2		
XA2	Environnement d'agressivité chimique modérée	Béton exposé à des sols et des eaux souterraines naturels selon le Tableau 2		
XA3	Environnement à forte agressivité chimique	Béton exposé à des sols et des eaux souterraines naturels selon le Tableau 2		

(3) Les environnements chimiques agressifs classés dans le Tableau 2 sont fondés sur des sols et eaux souterraines naturels, dont la température est comprise entre 5 °C et 25 °C, et où la vitesse d'écoulement de l'eau est suffisamment faible pour être assimilée à des conditions statiques. Le choix de la classe se fait par rapport à la caractéristique chimique correspondant à l'agression la plus élevée. Lorsqu'au moins deux caractéristiques agressives correspondent à une même classe, l'environnement doit être classé dans la classe immédiatement supérieure, sauf si une étude spécifique démontre que ce n'est pas nécessaire dans ce cas.

Tableau 2 — Valeurs limites pour les classes d'exposition correspondant aux attaques chimiques par les sols et eaux souterraines naturels

Caractéristique chimique	Méthode d'essai de référence	XA1	XA2	XA3
		Eaux souterraines		
SO_4^{2-} , en mg/l	EN 196-2	≥ 200 et ≤ 600	> 600 et ≤ 3 000	> 3 000 et ≤ 6 000
pH	ISO 4316	≤ 6,5 et ≥ 5,5	< 5,5 et ≥ 4,5	< 4,5 et ≥ 4,0
CO ₂ agressif, en mg/l	EN 13577	≥ 15 et ≤ 40	> 40 et ≤ 100	> 100 jusqu'à saturation
NH ₄ ⁺ , en mg/l	ISO 7150-2	≥ 15 et ≤ 30	> 30 et ≤ 60	> 60 et ≤ 100
Mg ²⁺ , en mg/l	EN ISO 7980	≥ 300 et ≤ 1 000	> 1 000 et ≤ 3 000	> 3 000 jusqu'à saturation
		Sols		
SO ₄ ²⁻ total, en mg/kg ^a	EN 196-2 ^b	\geq 2 000 et \leq 3 000 ^c	> 3 000 ^c et ≤ 12 000	> 12 000 et ≤ 24 000
Acidité selon Baumann-Gully, en ml/kg	prEN 16502	> 200	N'est pas rencontr	ée dans la pratique

a Les sols argileux dont la perméabilité est inférieure à 10^{-5} m/s peuvent être affectés à une classe inférieure.

b La méthode d'essai prescrit l'extraction du SO₄²⁻ à l'acide chlorhydrique ; il est également possible de procéder à cette extraction à l'eau, si l'on dispose d'une expérience en la matière sur le lieu d'utilisation du béton.

C La limite doit être ramenée de 3 000 mg/kg à 2 000 mg/kg en cas de risque d'accumulation d'ions sulfate dans le béton en raison de l'alternance de périodes sèches et de périodes humides ou d'absorption capillaire.

Tableau 3 — Classes d'affaissement

Classe	Affaissement, essai selon l'EN 12350-2
	mm
S1	10 à 40
S2	50 à 90
S3	100 à 150
S4	160 à 210
S5 a	≥ 220
a Voir la N	OTE 1 du 5.4.1.

Tableau 4 — Classes de serrage

Classe	Indice de serrage, essai selon l'EN 12350-4		
C0 a	≥ 1,46		
C1	1,45 à 1,26		
C2	1,25 à 1,11		
C3	1,10 à 1,04		
C4 b	< 1,04		
a Voir la N	a Voir la NOTE 1 du 5.4.1.		
b C4 s'appl	 C4 s'applique uniquement au béton léger. 		

Tableau 5 — Classes d'étalement à la table à chocs

Classe	Diamètre d'étalement à la table à chocs essai selon l'EN 12350-5 mm
F1 a	≤ 340
F2	350 à 410
F3	420 à 480
F4	490 à 550
F5	560 à 620
F6 ^a	≥ 630
a Voir la N	OTE 1 du 5.4.1.

Tableau 6 — Classes d'étalement au cône d'Abrams

Classe	Étalement au cône d'Abrams ^a , essai selon l'EN 12350-8 mm
SF1	550 à 650
SF2	660 à 750
SF3	760 à 850
^a La classification n'est pas applicable aux bétons dont $D_{ m max}$ excède 40 mm.	

4.2.2 Classes de propriétés supplémentaires du BAP

- (1) Lorsque le béton auto-plaçant est classé en fonction de sa viscosité apparente, de son aptitude à l'écoulement ou de sa résistance à la ségrégation (essai de stabilité au tamis), les Tableaux 7 à 11 s'appliquent.
- (2) La viscosité apparente peut également être spécifiée par une valeur cible, avec des tolérances comme indiqué dans le Tableau 23.
- (3) L'aptitude à l'écoulement peut également être spécifiée par une valeur minimale, lorsqu'elle est déterminée par l'essai à la boîte en L, ou par une valeur maximale, lorsqu'elle est déterminée par l'essai d'écoulement à l'anneau.
- (4) La résistance à la ségrégation (essai de stabilité au tamis) peut également être spécifiée par une valeur maximale.

Tableau 7 — Classes de viscosité apparente – t₅₀₀

Classe	<i>t</i> ₅₀₀ ^a , essai selon l'EN 12350-8 s
VS1	< 2,0
VS2	≥ 2,0
$^{ m a}$ La classification n'est pas applicable aux bétons dont $D_{ m max}$ excède 40 mm.	

Tableau 8 — Classes de viscosité apparente - t_v

Classe	t _v ^a , essai selon l'EN 12350-9 s
VF1	< 9,0
VF2	9,0 à 25,0
^a La classification n'est pas applicable aux bétons dont $D_{ m max}$ excède 22,4 mm.	

Tableau 9 — Classes d'aptitude à l'écoulement – Boîte en L

Classe	Taux de remplissage de la boîte en L, essai selon l'EN 12350-10
PL1	≥ 0,80 avec 2 armatures
PL2	≥ 0,80 avec 3 armatures

Tableau 10 — Classes d'aptitude à l'écoulement – Étalement à l'anneau

Classe	Palier de l'étalement à l'anneau ^a , essai selon l'EN 12350-12 mm
PJ1	≤ 10 avec 12 armatures
PJ2	≤ 10 avec 16 armatures
a La classification n'est pas applicable aux bétons dont la dimension maximale du granulat excède	

NOTE 2 Les classes définies dans les Tableaux 9 et 10 sont similaires, mais ne présentent pas une corrélation exacte.

Tableau 11 — Classes de résistance à la ségrégation – Essai de stabilité au tamis

Classe	Pourcentage de laitance ^a , essai selon l'EN 12350-11 %
SR1	≤ 20
SR2	≤ 15
$^{ m a}$ La classification n'est pas applicable aux bétons dont $D_{ m max}$ excède 40 mm.	

4.3 Classes de propriétés du béton durci

4.3.1 Classes de résistance à la compression

(1) Lorsque le béton est classé selon sa résistance à la compression, le Tableau 12 s'applique s'il s'agit d'un béton de masse volumique normale ou d'un béton lourd. Le Tableau 13 s'applique s'il s'agit d'un béton léger. La résistance caractéristique à la compression à 28 jours, mesurée sur des cylindres de 150 mm de diamètre et 300 mm de hauteur ($f_{\rm ck,cyl}$), ou la résistance caractéristique à la compression à 28 jours, mesurée sur des cubes de 150 mm de côté ($f_{\rm ck,cube}$), conformément à l'essai de l'EN 12390-3, peut être utilisée pour la classification,

NOTE Pour de plus amples informations, voir l'Annexe L, ligne 2.

Tableau 12 — Classes de résistance à la compression pour les bétons de masse volumique normale et les bétons lourds

Classe de résistance à la compression	Résistance caractéristique minimale sur cylindres f _{ck,cyl} N/mm ²	Résistance caractéristique minimale sur cubes $f_{ m ck,cube}$ N/mm 2				
C8/10	8	10				
C12/15	12	15				
C16/20	16	20				
C20/25	20	25				
C25/30	25	30				
C30/37	30	37				
C35/45	35	45				
C40/50	40	50				
C45/55	45	55				
C50/60	50	60				
C55/67	55	67				
C60/75	60	75				
C70/85	70	85				
C80/95	80	95				
C90/105	90	105				
C100/115	100	115				

5.1.7 Fibres

- (1) L'aptitude générale à l'emploi est établie pour :
- les fibres d'acier conformes à l'EN 14889-1;
- les fibres polymère conformes à l'EN 14889-2.

5.2.5.2 Concept de coefficient k pour les cendres volantes, les fumées de silice et le laitier granulé de haut-fourneau moulu

5.2.5.2.1 Généralités

- (1) Le concept de coefficient k est un concept prescriptif, Il est basé sur la comparaison de la performance de durabilité (ou résistance en tant que critère d'approximation de la durabilité, le cas échéant) d'un béton de référence contenant du ciment « A » et d'un béton d'essai dans lequel une partie du ciment « A » est remplacée par une addition, en fonction du rapport eau/ciment et de la teneur en addition.
- (2) Le concept du coefficient k autorise la prise en compte des additions de type II :
- le terme « rapport eau/ciment » est alors remplacé par « rapport eau/(ciment + k × addition) »; et
- la quantité de (ciment + k x addition) ne doit pas être inférieure à l'exigence de teneur minimale en ciment pour la classe d'exposition concernée (voir 5.3.2).
- (3) Les règles d'application du concept de coefficient k pour les cendres volantes conformes à l'EN 450-1, les fumées de silice conformes à l'EN 13263-1, ainsi que le laitier granulé de haut-fourneau moulu conforme à l'EN 15167-1, utilisés avec un ciment de type CEM I ou CEM II/A conforme à l'EN 197-1, sont définies dans les paragraphes suivants.

5,2,5,2,2 Coefficient k pour les cendres volantes conformes à l'EN 450-1

- (1) Un coefficient k de 0,4 est autorisé pour le béton dont le ciment est de type CEM I ou CEM II/A selon l'EN 197-1.
- (2) Pour une utilisation avec du ciment de type CEM I, la quantité maximale de cendres volantes à prendre en compte doit respecter l'exigence :
 - cendres volantes/ciment ≤ 0,33, en masse.
- (3) Pour une utilisation avec du ciment de type CEM II/A, la quantité maximale de cendres volantes à prendre en compte doit respecter l'exigence :
 - cendres volantes/ciment ≤ 0,25, en masse.
- (4) Si une plus grande quantité de cendres volantes est utilisée, l'excédent ne doit pas être pris en compte ni pour le calcul du rapport eau/(ciment + k × cendres volantes), ni pour le dosage minimal en ciment.

5,2,5,2,3 Coefficient k pour les fumées de silice de classe 1 conformes à l'EN 13263-1

- (1) L'application des coefficients k suivants est autorisée pour le béton dont le ciment est de type CEM I ou CEM II/A (sauf pour les ciments à la fumée de silice) selon l'EN 197-1:
- pour un rapport eau/ciment spécifié ≤ 0,45 k = 2,0 ;
- pour un rapport eau/ciment spécifié > 0,45 k = 2,0, sauf pour les classes d'exposition XC et XF, pour lesquelles k = 1,0.
- (2) La quantité maximale de fumées de silice de classe 1 à prendre en compte doit respecter l'exigence :
 - fumées de silice/ciment ≤ 0,11, en masse.
- (3) Si une plus grande quantité de fumées de silice de classe 1 est utilisée, l'excédent ne doit pas être pris en compte, ni pour le calcul du rapport eau/(ciment + k× fumées de silice), ni pour le dosage minimal en ciment.
- (4) La quantité de ciment ne doit pas être réduite de plus de 30 kg/m³ par rapport à l'exigence de teneur minimale en ciment pour la classe d'exposition concernée.

NOTE Des dispositions en vigueur sur le lieu d'utilisation s'appliquent pour les fumées de silice de classe 2.

5.2.5.2.4 Coefficient k pour le laitier granulé de haut-fourneau moulu conforme à l'EN 15167-1

(1) Le coefficient k et la quantité maximale de laitier granulé de haut-fourneau moulu à prendre en compte pour le concept de coefficient k doivent être conformes aux dispositions en vigueur sur le lieu d'utilisation du béton.

NOTE Pour de plus amples informations, voir l'Annexe L, ligne 7.

Tableau 15 — Teneur maximale en chlorures du béton

Utilisation du béton	Classe de teneur en chlorures ^a	Teneur maximale en CI [—] rapportée à la masse de ciment ^b %				
Ne contenant ni armatures en acier, ni pièces métalliques noyées (à l'exception des éléments de levage résistants à la corrosion)	Cl 1,00	1,00				
Contenant des armatures en acier ou des pièces	Cl 0,20	0,20				
métalliques noyées	Cl 0,40 ^c	0,40				
Contenant des armatures de précontrainte en acier en	Cl 0,10	0,10				
contact direct avec le béton	Cl 0,20	0,20				

Pour un usage spécifique du béton, la classe à utiliser dépend des dispositions en vigueur sur le lieu d'utilisation du béton.

- (2) Le chlorure de calcium et les adjuvants à base de chlorures ne doivent pas être ajoutés au béton contenant des armatures en acier, des armatures de précontrainte en acier ou des pièces métalliques noyées.
- (3) La méthode de détermination de la teneur en chlorures des constituants doit être conforme à la méthode d'essai correspondante du constituant.
- (4) Pour déterminer la teneur en chlorures du béton, la somme des contributions des constituants doit être calculée à l'aide de l'une des méthodes suivantes ou de leur combinaison :
- calcul fondé sur la teneur maximale en chlorures du constituant autorisée dans la norme relative au constituant, ou sur celle déclarée par le producteur de chacun des constituants;
- calcul fondé sur la teneur en chlorures des constituants, établie au moins une fois par mois par la somme des moyennes des 25 dernières déterminations de la teneur en chlorures, augmentée de 1,64 × l'écart-type calculé pour chaque constituant.

NOTE Cette dernière méthode s'applique particulièrement aux granulats marins et en l'absence de valeur maximale normalisée ou déclarée,

Lorsque des additions sont utilisées et sont prises en compte pour le dosage en ciment, la teneur en chlorures est exprimée comme le pourcentage d'ions chlorure par rapport à la masse du ciment plus la masse totale des additions considérées.

Différentes classes de teneur en chlorures peuvent être autorisées pour le béton contenant des ciments de type CEM III, selon les dispositions en vigueur sur le lieu d'utilisation.

Tableau 27 — Tolérances pour le dosage des constituants

Constituant	Tolérance				
Ciment					
Eau	+ 20/ do lo quantité magnica				
Ensemble des granulats	± 3 % de la quantité requise				
Additions et fibres utilisées en quantités > 5 % de la masse de ciment					
Adjuvants, additions et fibres utilisées en quantités ≤ 5 % de la masse de ciment	± 5 % de la quantité requise				
NOTE La tolérance est la différence entre la valeur cible et la valeur mesurée.					

- (3) Les ciments, granulats de masse volumique normale, granulat lourds, fibres, ainsi que les additions sous la forme de poudres doivent être dosés en fonction de leur masse, sauf si d'autres méthodes permettent de respecter la tolérance de dosage requise et qu'elles sont documentées.
- (4) L'eau de gâchage, les granulats légers, les adjuvants et les additions sous forme de « slurry » doivent être dosés en masse ou en volume.

Tableau F.1 — Recommandations relatives aux valeurs limites pour la composition et les propriétés du béton

		Classes d'exposition																
	Aucun					Corrosion par les chlorures												
	risque de corrosion ni d'attaque	Corrosion par carbonatation				Eau de mer			Chlorures autres que ceux de l'eau de mer			Attaque par le gel-dégel				Environnements chimiques agressifs		
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
e/c maximal ^c	-	0,65	0,60	0,55	0,50	0,50	0,45	0,45	0,55	0,55	0,45	0,55	0,55	0,50	0,45	0,55	0,50	0,45
Classe de résistance minimale	C12/15	C20/ 25	C25/3 0	C30/3 7	C30/3 7	C30/3 7	C35/4 5	C35/4 5	C30/3 7	C30/3 7	C35/4 5	C30/3 7	C25/3 0	C30/3 7	C30/3 7	C30/3 7	C30/3 7	C35/4 5
Teneur minimale en ciment ^c (kg/m³)	-	260	280	280	300	300	320	340	300	300	320	300	300	320	340	300	320	360
Teneur minimale en air (%)	-	-	-	-	-	-	-	-	-	1	-	ı	4,0ª	4,0ª	4,02	1	1	ı
Autres exigences	-	-	-	-	-	-	_	-	-	-	-	Granulats selon l'EN 12620, présentant une résistance au gel-dégel suffisante			-	Ciment résistant aux sulfates ^b		

a Lorsque le béton ne contient pas d'air entraîné volontairement, il convient de soumettre à essai la performance du béton selon une méthode d'essai appropriée et de la comparer à un béton pour lequel la résistance au gel-dégel pour la classe d'exposition concernée est établie.

b Lorsque la présence de sulfates conduit à des classes d'exposition XA2 et XA3, il est essentiel d'utiliser un ciment résistant aux sulfates conforme à l'EN 197-1 ou à des normes nationales complémentaires.

Conseque le concept de coefficient k est appliqué, le rapport maximal e/c et la teneur minimale en ciment sont modifiés conformément à 5,2,5,2,